Cristin-resultat-ID: 2038727
Sist endret: 29. september 2022, 13:13
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Equation of state for confined fluids

Bidragsytere:
  • Vilde Bråten
  • Daniel Tianhou Zhang
  • Morten Hammer
  • Ailo Aasen
  • Sondre Kvalvåg Schnell og
  • Øivind Wilhelmsen

Tidsskrift

Journal of Chemical Physics
ISSN 0021-9606
e-ISSN 1089-7690
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2022
Trykket: 2022
Volum: 156
Hefte: 24
Artikkelnummer: 244504
Open Access

Importkilder

Scopus-ID: 2-s2.0-85133532516

Beskrivelse Beskrivelse

Tittel

Equation of state for confined fluids

Sammendrag

Fluids confined in small volumes behave differently than fluids in bulk systems. For bulk systems, a compact summary of the system's thermodynamic properties is provided by equations of state. However, there is currently a lack of successful methods to predict the thermodynamic properties of confined fluids by use of equations of state, since their thermodynamic state depends on additional parameters introduced by the enclosing surface. In this work, we present a consistent thermodynamic framework that represents an equation of state for pure, confined fluids. The total system is decomposed into a bulk phase in equilibrium with a surface phase. The equation of state is based on an existing, accurate description of the bulk fluid and uses Gibbs' framework for surface excess properties to consistently incorporate contributions from the surface. We apply the equation of state to a Lennard-Jones spline fluid confined by a spherical surface with a Weeks-Chandler-Andersen wall-potential. The pressure and internal energy predicted from the equation of state are in good agreement with the properties obtained directly from molecular dynamics simulations. We find that when the location of the dividing surface is chosen appropriately, the properties of highly curved surfaces can be predicted from those of a planar surface. The choice of the dividing surface affects the magnitude of the surface excess properties and its curvature dependence, but the properties of the total system remain unchanged. The framework can predict the properties of confined systems with a wide range of geometries, sizes, interparticle interactions, and wall-particle interactions, and it is independent of ensemble. A targeted area of use is the prediction of thermodynamic properties in porous media, for which a possible application of the framework is elaborated.

Bidragsytere

Inaktiv cristin-person

Vilde Bråten

  • Tilknyttet:
    Forfatter
    ved Institutt for materialteknologi ved Norges teknisk-naturvitenskapelige universitet

Daniel Tianhou Zhang

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemi ved Norges teknisk-naturvitenskapelige universitet

Morten Hammer

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS
  • Tilknyttet:
    Forfatter
    ved Institutt for kjemi ved Norges teknisk-naturvitenskapelige universitet

Ailo Aasen

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Sondre Kvalvåg Schnell

  • Tilknyttet:
    Forfatter
    ved Institutt for materialteknologi ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 6 | Neste | Siste »