Cristin-resultat-ID: 2040644
Sist endret: 3. august 2022, 11:27
Resultat
Vitenskapelig artikkel
2020

A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs

Bidragsytere:
  • Artem Komissarov

Tidsskrift

Science Advances
ISSN 2375-2548
e-ISSN 2375-2548
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Open Access

Beskrivelse Beskrivelse

Tittel

A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs

Sammendrag

Through the asymmetric distribution of messenger RNAs (mRNAs), cells spatially regulate gene expression to create cytoplasmic domains with specialized functions. In neurons, mRNA localization is required for essential processes such as cell polarization, migration, and synaptic plasticity underlying long-term memory formation. The essential components driving cytoplasmic mRNA transport in neurons and mammalian cells are not known. We report the first reconstitution of a mammalian mRNA transport system revealing that the tumor suppressor adenomatous polyposis coli (APC) forms stable complexes with the axonally localized β-actin and β2B-tubulin mRNAs, which are linked to a kinesin-2 via the cargo adaptor KAP3. APC activates kinesin-2, and both proteins are sufficient to drive specific transport of defined mRNA packages. Guanine-rich sequences located in 3'UTRs of axonal mRNAs increase transport efficiency and balance the access of different mRNAs to the transport system. Our findings reveal a minimal set of proteins sufficient to transport mammalian mRNAs.

Bidragsytere

Artem Komissarov

  • Tilknyttet:
    Forfatter
    ved Centro de Regulación Genómica
1 - 1 av 1