Cristin-resultat-ID: 2044029
Sist endret: 17. februar 2023, 09:25
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Oxygen Nonstoichiometry and Defect Models of Brownmillerite-Structured Ca2MnAlO5+δ for Chemical Looping Air Separation

Bidragsytere:
  • Yuan Tian
  • Giancarlo Luongo
  • Felix Donat
  • Christoph R. Müller
  • Yngve Larring
  • Phillip R. Westmoreland
  • mfl.

Tidsskrift

ACS Sustainable Chemistry and Engineering
ISSN 2168-0485
e-ISSN 2168-0485
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2022
Trykket: 2022
Volum: 10
Hefte: 31
Sider: 10393 - 10402
Artikkelnummer: 2c03485

Importkilder

Scopus-ID: 2-s2.0-85136251912

Beskrivelse Beskrivelse

Tittel

Oxygen Nonstoichiometry and Defect Models of Brownmillerite-Structured Ca2MnAlO5+δ for Chemical Looping Air Separation

Sammendrag

Brownmillerite-structured Ca2MnAlO5+δ has demonstrated excellent oxygen storage capacity that can be used for chemical looping air separation (CLAS), a potentially efficient approach to produce high-purity oxygen from air. To effectively utilize this material as an oxygen sorbent in CLAS, it is necessary to comprehensively understand its thermodynamic properties and the structure–performance relationships in the operating range of interest. In this work, the oxygen nonstoichiometry (δ) of Ca2MnAlO5+δ was systematically measured by thermogravimetric analysis (TGA) in the temperature ranging from 440 to 660 °C and under an oxygen partial pressure ranging from 0.01 to 0.8 atm. The partial molar enthalpy and entropy for the oxygen-releasing reaction were calculated using the van’t Hoff equation with an average value of 146.5 ± 4.7 kJ/mol O2 and 162.7 ± 5.1 J/K mol O2, respectively. The experimentally measured nonstoichiometry (δ) was well fitted by a point defect model applied in two regions divided by the predicted equilibrium P–T curve. The equilibrium constants for appropriate defect reactions were also determined. The thermochemical parameters, molar enthalpy and entropy for the main reaction, obtained from the defect model were 136.9 kJ/mol O2 and 225.3 J/K mol O2, respectively, showing reasonable agreement with the aforementioned values. The applicability of the defect model was also verified at a higher oxygen partial-pressure environment of up to 4 atm and exhibited reasonable prediction of the trend. The experimental studies on oxygen nonstoichiometry combined with the defect modeling provide useful insights into oxygen sorbents’ redox performances and helpful information for the design and optimization of oxygen sorbents in CLAS.

Bidragsytere

Yuan Tian

  • Tilknyttet:
    Forfatter
    ved North Carolina State University

Gaia Luongo

Bidragsyterens navn vises på dette resultatet som Giancarlo Luongo
  • Tilknyttet:
    Forfatter
    ved Eidgenössische Technische Hochschule Zürich

Felix Donat

  • Tilknyttet:
    Forfatter
    ved Eidgenössische Technische Hochschule Zürich

CR Muller

Bidragsyterens navn vises på dette resultatet som Christoph R. Müller
  • Tilknyttet:
    Forfatter
    ved Eidgenössische Technische Hochschule Zürich

Yngve Larring

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS
1 - 5 av 7 | Neste | Siste »