Cristin-resultat-ID: 2054962
Sist endret: 18. januar 2023, 12:45
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

One-dimensional mathematical modeling of two-phase ejectors: Extension to mixtures and mapping of the local exergy destruction

Bidragsytere:
  • Øivind Wilhelmsen
  • Ailo Aasen
  • Krzysztof Banasiak
  • Halvor Herlyng og
  • Armin Hafner

Tidsskrift

Applied Thermal Engineering
ISSN 1359-4311
e-ISSN 1873-5606
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2022
Trykket: 2022
Volum: 217
Artikkelnummer: 119228
Open Access

Importkilder

Scopus-ID: 2-s2.0-85138042097

Beskrivelse Beskrivelse

Tittel

One-dimensional mathematical modeling of two-phase ejectors: Extension to mixtures and mapping of the local exergy destruction

Sammendrag

The ejector is a process equipment frequently used in refrigeration processes. There is currently a knowledge gap on the efficiency of ejectors operating with mixtures. To address this knowledge gap, we present a one-dimensional ejector model for mixtures, defined by spatially distributed mass-, energy- and momentum-balances for different zones, which together constitute the full ejector geometry. The recently developed delayed homogeneous relaxation model is used to describe the two-phase transition in the motive and suction nozzles. For evaporation of pure in the throat of the motive nozzle, the model yields an average error of 2.6% in the critical mass flow rate, which is significantly lower than the homogeneous equilibrium model that has an average error of 8.4%. A comparison to new experimental data shows that both models give excellent predictions of critical mass flow rates where condensation occurs in the throat, with an average error below 0.9%. New experimental data with are presented, which are used to regress two parameters in correlations that describe the momentum transfer between the primary and secondary stream in the mixer and diffuser sections. This leads to accurate reproduction of the pressure lift in five different ejector geometries, with a mean error of 2.3%. By using nonequilibrium thermodynamics, we derive formulae for the local exergy destruction in the ejector. The largest exergy destruction is located in the mixer, and originates in transfer of momentum between the primary and secondary streams. The local exergy destruction profiles through the mixer and diffuser are highly non-uniform, and deviate from the established guidelines for energy-efficient design characterized by equipartition of exergy destruction. This reveals a potential to increase the performance of ejectors by suitable adjustments to their geometric design. The mathematical model validated for pure is assumed to also be valid for mixtures rich in . We show that minute concentrations of a second component can have a significant influence on the ejector performance. When fixing the inlet conditions and ejector geometry, we demonstrate that adding 2% to a mixture of decreases the critical mass flow rate by 20%, while adding 2% increases the pressure lift by 1 bar.

Bidragsytere

Øivind Wilhelmsen

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS
  • Tilknyttet:
    Forfatter
    ved Institutt for kjemi ved Norges teknisk-naturvitenskapelige universitet

Ailo Aasen

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Krzysztof Banasiak

  • Tilknyttet:
    Forfatter
    ved Termisk energi ved SINTEF Energi AS

Halvor Herlyng

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet
Aktiv cristin-person

Armin Hafner

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 5