Cristin-resultat-ID: 2072308
Sist endret: 17. februar 2023, 09:56
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Sharp dose profiles for high precision proton therapy using strongly focused proton beams

Bidragsytere:
  • Fardous Reaz
  • Kyrre Ness Sjobak
  • Eirik Malinen
  • Nina Frederike Jeppesen Edin og
  • Erik Adli

Tidsskrift

Scientific Reports
ISSN 2045-2322
e-ISSN 2045-2322
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Volum: 12
Hefte: 1
Open Access

Importkilder

Scopus-ID: 2-s2.0-85141484951

Klassifisering

Vitenskapsdisipliner

Fysikk • Onkologi

Emneord

Stråleterapi • Partikkelakselerator • Protonterapi

Beskrivelse Beskrivelse

Tittel

Sharp dose profiles for high precision proton therapy using strongly focused proton beams

Sammendrag

The main objective of radiotherapy is to exploit the curative potential of ionizing radiation while inflicting minimal radiation-induced damage to healthy tissue and sensitive organs. Proton beam therapy has been developed to irradiate the tumor with higher precision and dose conformity compared to conventional X-ray irradiation. The dose conformity of this treatment modality may be further improved if narrower proton beams are used. Still, this is limited by multiple Coulomb scattering of protons through tissue. The primary aim of this work was to develop techniques to produce narrow proton beams and investigate the resulting dose profiles. We introduced and assessed three different proton beam shaping techniques: (1) metal collimators (100/150 MeV), (2) focusing of conventional- (100/150 MeV), and (3) focusing of high-energy (350 MeV, shoot-through) proton beams. Focusing was governed by the initial value of the Twiss parameter 𝛼 (𝛼0), and can be implemented with magnetic particle accelerator optics. The dose distributions in water were calculated by Monte Carlo simulations using Geant4, and evaluated by target to surface dose ratio (TSDR) in addition to the transverse beam size (σ𝑇) at the target. The target was defined as the location of the Bragg peak or the focal point. The different techniques showed greatly differing dose profiles, where focusing gave pronouncedly higher relative target dose and efficient use of primary protons. Metal collimators with radii 3.6 mm). In contrast, a focused beam of conventional (150 MeV) energy produced a very high TSDR (> 80) with similar σ𝑇 as a collimated beam. High-energy focused beams were able to produce TSDRs > 100 and σ𝑇 around 1.5 mm. From this study, it appears very attractive to implement magnetically focused proton beams in radiotherapy of small lesions or tumors in close vicinity to healthy organs at risk. This can also lead to a paradigm change in spatially fractionated radiotherapy. Magnetic focusing would facilitate FLASH irradiation due to low losses of primary protons.

Bidragsytere

Fardous Reaz

  • Tilknyttet:
    Forfatter
    ved Høyenergifysikk ved Universitetet i Oslo

Kyrre Ness Sjøbæk

Bidragsyterens navn vises på dette resultatet som Kyrre Ness Sjobak
  • Tilknyttet:
    Forfatter
    ved Høyenergifysikk ved Universitetet i Oslo

Eirik Malinen

  • Tilknyttet:
    Forfatter
    ved Biofysikk og medisinsk fysikk ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Avdeling for medisinsk fysikk ved Oslo universitetssykehus HF

Nina Frederike Jeppesen Edin

  • Tilknyttet:
    Forfatter
    ved Biofysikk og medisinsk fysikk ved Universitetet i Oslo

Erik Adli

  • Tilknyttet:
    Forfatter
    ved Høyenergifysikk ved Universitetet i Oslo
1 - 5 av 5