Cristin-resultat-ID: 2090424
Sist endret: 11. januar 2023, 15:56
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Revisiting the reattachment regime: a closer look at tandem cylinder flow at Re=10000

Bidragsytere:
  • Tale Egeberg Aasland
  • Bjørnar Pettersen
  • Helge Ingolf Andersson og
  • Fengjian Jiang

Tidsskrift

Journal of Fluid Mechanics
ISSN 0022-1120
e-ISSN 1469-7645
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2022
Volum: 953
Sider: 1 - 31
Artikkelnummer: A18
Open Access

Importkilder

Scopus-ID: 2-s2.0-85143907330

Beskrivelse Beskrivelse

Tittel

Revisiting the reattachment regime: a closer look at tandem cylinder flow at Re=10000

Sammendrag

Tandem cylinder flow comprises several different flow regimes. Within the reattachment regime, the development of the gap shear layers is of utmost importance to the flow, but has received little attention so far. Through direct numerical simulations at Re = 104, for a gap ratio of 3.0, we have discovered that the shear layers are significantly altered with respect to a single cylinder. These differences include early onset of separation, crossflow stabilising, delayed transition to turbulence and little meandering of the transition region. Vortex pairing in the gap shear layers is reported for the first time. The interaction between the recirculating gap flow and the shear layers was investigated. Asymmetrical, large-scale gap vortices influence the position of transition to turbulence through direct contact and through secondary flows. The occurrence of transition in the gap shear layers has consequences for both the reattachment mechanism and the development of the downstream cylinder wake. The reattachment points are unsteady with large amplitude fluctuations on a fine time scale. Reattachment is seen to be a combination of impingement and modification of the upstream shear layers, which causes a double shear layer in the downstream cylinder near-wake. Buffeting by and interaction with the gap shear layers likely cause transition to turbulence in the downstream cylinder boundary layer. This leads to significant changes in the wake topology, compared with a single-cylinder wake.

Bidragsytere

Tale Egeberg Aasland

  • Tilknyttet:
    Forfatter
    ved Institutt for marin teknikk ved Norges teknisk-naturvitenskapelige universitet

Bjørnar Pettersen

  • Tilknyttet:
    Forfatter
    ved Institutt for marin teknikk ved Norges teknisk-naturvitenskapelige universitet

Helge Andersson

Bidragsyterens navn vises på dette resultatet som Helge Ingolf Andersson
  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet

Fengjian Jiang

  • Tilknyttet:
    Forfatter
    ved Skip og havkonstruksjoner ved SINTEF Ocean
1 - 4 av 4