Cristin-resultat-ID: 2132474
Sist endret: 10. mars 2023, 10:13
NVI-rapporteringsår: 2023
Resultat
Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
2023

Prediction of Heave and Pitch Low Frequency Wave Forces and Motions of a Semi-Submersible Floating Wind Turbine and Comparison With Model Test Data

Bidragsytere:
  • Nuno Fonseca
  • Carlos Eduardo Silva de Souza og
  • Petter Andreas Berthelsen

Bok

IOWTC2022 - Proceedings of the ASME 2022 4th International Offshore Wind - Technical Conference
ISBN:
  • 978-0-7918-8661-8

Utgiver

The American Society of Mechanical Engineers (ASME)
NVI-nivå 1

Om resultatet

Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
Publiseringsår: 2023
Antall sider: 11
ISBN:
  • 978-0-7918-8661-8

Klassifisering

Fagfelt (NPI)

Fagfelt: Konstruksjonsfag
- Fagområde: Realfag og teknologi

Beskrivelse Beskrivelse

Tittel

Prediction of Heave and Pitch Low Frequency Wave Forces and Motions of a Semi-Submersible Floating Wind Turbine and Comparison With Model Test Data

Sammendrag

Most of the floating wind turbine (FWT) sub-structure concepts are designed with long natural periods of the vertical motions to de-tune from the wave frequency range. The consequence is that the natural frequencies of heave, roll and pitch are excited by low frequency wave and wind loads. The paper focus is on the low frequency (LF) wave drift loads and the related heave and pitch responses of a semi-submersible type of FWT (12MW INO WINDMOOR). It presents several approaches to calculate the wave drift force coefficients and related forces in irregular waves, namely mean wave drift coefficients combined with Newman's approximation, quadratic transfer functions (QTFs) neglecting the free surface integral from the 2nd order potential flow solution and QTFs based on the full 2nd order solution. The different approximations are used to perform nonlinear time domain simulations of the FWT motions and the results compared to the model test data (the model tests were performed in the ocean basin of SINTEF at a scale of 1:40). The LF damping of heave and pitch is represented by a linear and a quadratic damping coefficient identified from decay model tests. The coupled numerical solution requires a correct representation of the surge mode of motion. In this case, the wave drift forces are represented by empirical QTFs, while the LF damping includes a contribution from the calm water damping represented by a linear and a quadratic coefficient, together with a wave drift damping coefficient. The numerical results show a good agreement with the model test data in irregular waves when full QTFs are used to calculate the wave drift forces.

Bidragsytere

Nuno Fonseca

  • Tilknyttet:
    Forfatter
    ved Skip og havkonstruksjoner ved SINTEF Ocean

Carlos Eduardo Silva de Souza

  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean

Petter Andreas Berthelsen

  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean
1 - 3 av 3

Resultatet er en del av Resultatet er en del av

IOWTC2022 - Proceedings of the ASME 2022 4th International Offshore Wind - Technical Conference.

NN, NN. 2023, The American Society of Mechanical Engineers (ASME). Vitenskapelig antologi/Konferanseserie
1 - 1 av 1