Cristin-resultat-ID: 2150928
Sist endret: 26. november 2023, 13:46
NVI-rapporteringsår: 2023
Resultat
Vitenskapelig artikkel
2023

Low-Cost Angle of Arrival-Based Auxiliary Navigation System for UAV using Signals of Opportunity

Bidragsytere:
  • Adrian Winter
  • Nadezda Sokolova
  • Aiden J Morrison
  • Oliver Kevin Hasler og
  • Tor Arne Johansen

Tidsskrift

IEEE - ION Position Location and Navigation Symposium
ISSN 2153-358X
e-ISSN 2153-3598
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2023
Publisert online: 2023
Hefte: C3: Signals of Opportunity-Based Systems
Sider: 1162 - 1169
Open Access

Klassifisering

Vitenskapsdisipliner

Informasjons- og kommunikasjonsteknologi

Emneord

Navigasjon

Beskrivelse Beskrivelse

Tittel

Low-Cost Angle of Arrival-Based Auxiliary Navigation System for UAV using Signals of Opportunity

Sammendrag

Many modern devices rely on satellite navigation for reliable, precise and ubiquitous localization. While this enables technological advances that have been unthinkable a few decades ago, it also has clear implications on safety and resilience. There have been many real-world incidents where through deliberate or accidental interference, as well as simply by design, satellite navigation has been shown to be unreliable. Consequences of encountering interference can range from anywhere between minor inconveniences to catastrophic failure with loss of life. For unmanned aerial vehicles (UAVs), the consequences will often be significant economical damages or injury, but the risk is not high enough to justify expensive backup navigation systems that are rarely used. This paper investigates a sensor build on low-cost commercial off-the-shelf (COTS) hardware that can be used in costal areas if localized global navigation satellite systems (GNSS) interference occurs. This sensor works by measuring the incoming angles of radio signals sent by maritime vessels as part of the Automatic Identification System (AIS) and triangulating the receiver’s position. The measurement precision of the hardware combination is evaluated from experiments with real-world signals. It is then shown in simulations that this achievable performance can lead to a significant improvement of the vehicle’s state estimation compared to pure dead reckoning in GNSS-outage scenarios.

Bidragsytere

Adrian Winter

  • Tilknyttet:
    Forfatter
    ved Institutt for teknisk kybernetikk ved Norges teknisk-naturvitenskapelige universitet

Nadezda Sokolova

  • Tilknyttet:
    Forfatter
    ved Sustainable Communication Technologies ved SINTEF AS

Aiden James Morrison

Bidragsyterens navn vises på dette resultatet som Aiden J Morrison
  • Tilknyttet:
    Forfatter
    ved Sustainable Communication Technologies ved SINTEF AS

Oliver Kevin Hasler

  • Tilknyttet:
    Forfatter
    ved Institutt for teknisk kybernetikk ved Norges teknisk-naturvitenskapelige universitet

Tor Arne Johansen

  • Tilknyttet:
    Forfatter
    ved Institutt for teknisk kybernetikk ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 5