Cristin-resultat-ID: 2152359
Sist endret: 20. desember 2023, 10:03
NVI-rapporteringsår: 2023
Resultat
Vitenskapelig artikkel
2023

Functional Diversity of Homologous Oxidoreductases—Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction

Bidragsytere:
  • Marta Hammerstad
  • Anne Kristine Rugtveit
  • Sondov Åsmundson Braathen Dahlen
  • Hilde Kristin Andersen og
  • Hans-Petter Hersleth

Tidsskrift

Antioxidants
ISSN 2076-3921
e-ISSN 2076-3921
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2023
Publisert online: 2023
Trykket: 2023
Volum: 12
Hefte: 6
Artikkelnummer: 1224
Open Access

Importkilder

Scopus-ID: 2-s2.0-85163850611

Klassifisering

Vitenskapsdisipliner

Biokjemi

Emneord

Strukturbiologi • Enzymologi

Beskrivelse Beskrivelse

Tittel

Functional Diversity of Homologous Oxidoreductases—Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction

Sammendrag

Although bacterial thioredoxin reductase-like ferredoxin/flavodoxin NAD(P)+ oxidoreduc- tases (FNRs) are similar in terms of primary sequences and structures, they participate in diverse biological processes by catalyzing a range of different redox reactions. Many of the reactions are critical for the growth, survival of, and infection by pathogens, and insight into the structural basis for substrate preference, specificity, and reaction kinetics is crucial for the detailed understanding of these redox pathways. Bacillus cereus (Bc) encodes three FNR paralogs, two of which have assigned distinct biological functions in bacillithiol disulfide reduction and flavodoxin (Fld) reduction. Bc FNR2, the endogenous reductase of the Fld-like protein NrdI, belongs to a distinct phylogenetic cluster of homologous oxidoreductases containing a conserved His residue stacking the FAD cofactor. In this study, we have assigned a function to FNR1, in which the His residue is replaced by a conserved Val, in the reduction of the heme-degrading monooxygenase IsdG, ultimately facilitating the release of iron in an important iron acquisition pathway. The Bc IsdG structure was solved, and IsdG-FNR1 interactions were proposed through protein–protein docking. Mutational studies and bioinformatics analyses confirmed the importance of the conserved FAD-stacking residues on the respective reaction rates, proposing a division of FNRs into four functionally unique sequence similarity clusters likely related to the nature of this residue.

Bidragsytere

Marta Hammerstad

  • Tilknyttet:
    Forfatter
    ved Seksjon for biokjemi og molekylærbiologi ved Universitetet i Oslo

Anne Kristine Rugtveit

  • Tilknyttet:
    Forfatter
    ved Seksjon for biokjemi og molekylærbiologi ved Universitetet i Oslo

Sondov Åsmundson Braathen Dahlen

  • Tilknyttet:
    Forfatter
    ved Seksjon for biokjemi og molekylærbiologi ved Universitetet i Oslo

Hilde Kristin Andersen

  • Tilknyttet:
    Forfatter
    ved Seksjon for biokjemi og molekylærbiologi ved Universitetet i Oslo

Hans-Petter Hersleth

  • Tilknyttet:
    Forfatter
    ved Seksjon for biokjemi og molekylærbiologi ved Universitetet i Oslo
1 - 5 av 5