Cristin-resultat-ID: 2152472
Sist endret: 19. februar 2024, 10:08
NVI-rapporteringsår: 2023
Resultat
Vitenskapelig artikkel
2023

Band structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitals

Bidragsytere:
  • Marius Kadek
  • Baokai Wang
  • Marc Joosten
  • Wei-Chi Chiu
  • Francois Mairesse
  • Michal Repisky
  • mfl.

Tidsskrift

PHYSICAL REVIEW MATERIALS
ISSN 2475-9953
e-ISSN 2475-9953
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2023
Publisert online: 2023
Volum: 7
Artikkelnummer: 064001
Open Access

Importkilder

Scopus-ID: 2-s2.0-85161924096

Beskrivelse Beskrivelse

Tittel

Band structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitals

Sammendrag

Two-dimensional (2D) materials exhibit a wide range of remarkable phenomena, many of which owe their existence to the relativistic spin-orbit coupling (SOC) effects. To understand and predict properties of materials containing heavy elements, such as the transition-metal dichalcogenides (TMDs), relativistic effects must be taken into account in first-principles calculations. We present an all-electron method based on the four-component Dirac Hamiltonian and Gaussian-type orbitals (GTOs) that overcomes complications associated with linear dependencies and ill-conditioned matrices that arise when diffuse functions are included in the basis. Until now, there has been no systematic study of the convergence of GTO basis sets for periodic solids either at the nonrelativistic or the relativistic level. Here we provide such a study of relativistic band structures of the 2D TMDs in the hexagonal (2H), tetragonal (1T), and distorted tetragonal (1T') structures, along with a discussion of their SOC-driven properties (Rashba splitting and Z 2 topological invariants). We demonstrate the viability of our approach even when large basis sets with multiple basis functions involving various valence orbitals (denoted triple- and quadruple- ζ ) are used in the relativistic regime. Our method does not require the use of pseudopotentials and provides access to all electronic states within the same framework. Our study paves the way for direct studies of material properties, such as the parameters in spin Hamiltonians, that depend heavily on the electron density near atomic nuclei where relativistic and SOC effects are the strongest.

Bidragsytere

Marius Kadek

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemi ved UiT Norges arktiske universitet
  • Tilknyttet:
    Forfatter
    ved Northeastern University

Baokai Wang

  • Tilknyttet:
    Forfatter
    ved Northeastern University

Marc Joosten

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemi ved UiT Norges arktiske universitet

Wei-Chi Chiu

  • Tilknyttet:
    Forfatter
    ved Northeastern University

Francois Mairesse

  • Tilknyttet:
    Forfatter
    ved Université de Namur
1 - 5 av 8 | Neste | Siste »