Cristin-resultat-ID: 2164201
Sist endret: 13. desember 2023, 13:34
NVI-rapporteringsår: 2023
Resultat
Vitenskapelig artikkel
2023

Crude Oil Density Prediction Improved by Multiblock Analysis of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Fourier Transform Infrared, and Near-Infrared Spectroscopy Data

Bidragsytere:
  • Elise Lunde Gjelsvik
  • Martin Fossen
  • Anders Brunsvik
  • Kristian Hovde Liland og
  • Kristin Tøndel

Tidsskrift

Applied Spectroscopy
ISSN 0003-7028
e-ISSN 1943-3530
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2023
Publisert online: 2023
Volum: 77
Hefte: 10

Importkilder

Scopus-ID: 2-s2.0-85166624021

Beskrivelse Beskrivelse

Tittel

Crude Oil Density Prediction Improved by Multiblock Analysis of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Fourier Transform Infrared, and Near-Infrared Spectroscopy Data

Sammendrag

Crude oils are among the world’s most complex organic mixtures containing a large number of unique components and many analytical techniques lack resolving power to characterize. Fourier transform ion cyclotron resonance mass spectrometry offers a high mass accuracy, making a detailed analysis of crude oils possible. Infrared (IR) spectroscopic methods such as Fourier transform IR spectroscopy (FT-IR) and near-IR, can also be used for crude oil characterization. The three methods measure different properties of the samples, and different data sources can often be combined to improve the prediction accuracy of models. In this study, partial least squares regression (PLSR) models for each of the three methods (single-block PLSR) were compared to multiblock PLSR and sequential and orthogonalized PLSR (SO-PLSR), with the aim of predicting the density of crude oils. Variable importance in projection was used to identify the important variables for each method, as spectroscopic data often contain irrelevant variation. The variables were interpreted to evaluate their underlying chemistry and to check whether consistency could be found between the variables selected from the spectroscopic data for the single-block and multiblock methods. Combining the different blocks of data increased the prediction abilities of the models both before and after variable selection, and SO-PLSR using a reduced data set resulted in the best-performing prediction model.

Bidragsytere

Elise Lunde Gjelsvik

  • Tilknyttet:
    Forfatter
    ved Institutt for datavitenskap ved Norges miljø- og biovitenskapelige universitet

Martin Fossen

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

Anders Brunsvik

  • Tilknyttet:
    Forfatter
    ved Bioteknologi og nanomedisin ved SINTEF AS
Aktiv cristin-person

Kristian Hovde Liland

  • Tilknyttet:
    Forfatter
    ved Institutt for maskinteknikk og teknologiledelse ved Norges miljø- og biovitenskapelige universitet

Kristin Tøndel

  • Tilknyttet:
    Forfatter
    ved Institutt for datavitenskap ved Norges miljø- og biovitenskapelige universitet
1 - 5 av 5