Cristin-resultat-ID: 2169782
Sist endret: 23. januar 2024, 12:56
Resultat
Vitenskapelig artikkel
2024

Hydrogen trapping and diffusion in polycrystalline nickel: The spectrum of grain boundary segregation

Bidragsytere:
  • Yu Ding
  • Haiyang Yu
  • Meichao Lin
  • Michael Ortiz
  • Senbo Xiao
  • Jianying He
  • mfl.

Tidsskrift

Journal of Materials Science & Technology
ISSN 1005-0302
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2024
Volum: 173
Sider: 225 - 236
Open Access

Importkilder

Scopus-ID: 2-s2.0-85169502061

Beskrivelse Beskrivelse

Tittel

Hydrogen trapping and diffusion in polycrystalline nickel: The spectrum of grain boundary segregation

Sammendrag

Hydrogen as an interstitial solute at grain boundaries (GBs) can have a catastrophic impact on the mechanical properties of many metals. Despite the global research effort, the underlying hydrogen-GB interactions in polycrystals remain inadequately understood. In this study, using Voronoi tessellations and atomistic simulations, we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites. Three distinct peaks in the energy spectrum are identified, corresponding to different structural fingerprints. The first peak (-0.205 eV) represents the most favorable segregation sites at GB core, while the second and third peaks account for the sites at GB surface. By incorporating a thermodynamic model, the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs, unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies. The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion, with the low-barrier channels inside GB core contributing to short-circuit diffusion, while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers. Mean square displacement analysis further confirms the findings, and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice. The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic scale interactions and macroscopic behaviors in engineering materials.

Bidragsytere

Yu Ding

  • Tilknyttet:
    Forfatter
    ved Institutt for konstruksjonsteknikk ved Norges teknisk-naturvitenskapelige universitet

Haiyang Yu

  • Tilknyttet:
    Forfatter

Meichao Lin

  • Tilknyttet:
    Forfatter
    ved Institutt for konstruksjonsteknikk ved Norges teknisk-naturvitenskapelige universitet

Michael Ortiz

  • Tilknyttet:
    Forfatter

Senbo Xiao

  • Tilknyttet:
    Forfatter
    ved Institutt for konstruksjonsteknikk ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 7 | Neste | Siste »