Cristin-resultat-ID: 2171917
Sist endret: 4. september 2023, 09:09
Resultat
Vitenskapelig foredrag
2023

Impact of fluid viscosity on density-unstable displacements in inclined and eccentric annuli

Bidragsytere:
  • Maryam Ghorbani
  • Knut Erik Teigen Giljarhus og
  • Hans Joakim Skadsem

Presentasjon

Navn på arrangementet: Olympiad in Engineering Science 2023
Sted: Athens, Greece
Dato fra: 23. mai 2023
Dato til: 27. mai 2023

Arrangør:

Arrangørnavn: University of Stavanger

Om resultatet

Vitenskapelig foredrag
Publiseringsår: 2023

Beskrivelse Beskrivelse

Tittel

Impact of fluid viscosity on density-unstable displacements in inclined and eccentric annuli

Sammendrag

Construction of wells for oil production, geothermal energy recovery or geological storage of carbon dioxide is performed in stages by drilling the rock formation to a certain vertical depth, and then isolating the drilled section by running and cementing a casing string in the hole. The conventional cementing strategy relies on displacing the annular space behind the casing from the bottom and toward surface, which places the denser cementing fluids below the original annular fluid. An alternative cement placement strategy is to displace the annular space from the surface and downward by injecting cementing fluids directly into the annulus. Such reverse circulation operations have the benefit of lower circulation pressures and a reduced risk of fracturing the formation during placement, but also leads to density-unstable displacement conditions and increased risk of fluid contamination. To better understand how the design of cementing fluids and their placement rate affect reverse circulation displacements, we performed a series of computational simulations of density-unstable displacements with a realistic three-dimensional geometrical model of a wellbore annulus. We address the effects of wellbore inclination and inner pipe eccentricity, with a particular focus on impacts of the fluid viscosity hierarchy on the annular displacement efficiency. Our results show that increasing the displaced fluid viscosity will act to suppress the tendency for buoyant backflow, while it can worsen displacement of the narrow side of the eccentric annulus. Transverse secondary flows which are stronger where the displaced fluid is less viscous contribute to the displacement of the narrow, low side of the annulus. We also observe that increasing the imposed axial velocity will tend to stabilize the annular displacement and suppress backflow, in agreement with previous work for buoyant pipe displacements. We finally perform a qualitative comparison of our numerical results to recently published cementing data from an offshore well. The present computational study is a step toward understanding how buoyant, inertial, and viscous stresses affect density-unstable displacement flows for reverse circulation cementing.

Bidragsytere

Maryam Ghorbani

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og petroleumsteknologi ved Universitetet i Stavanger

Knut Erik Teigen Giljarhus

  • Tilknyttet:
    Forfatter
    ved Institutt for maskin, bygg og materialteknologi ved Universitetet i Stavanger

Hans Joakim Skadsem

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og petroleumsteknologi ved Universitetet i Stavanger
  • Tilknyttet:
    Forfatter
    ved NORCE Energi og teknologi ved NORCE Norwegian Research Centre AS
1 - 3 av 3