Cristin-resultat-ID: 2212132
Sist endret: 15. februar 2024, 14:18
NVI-rapporteringsår: 2023
Resultat
Vitenskapelig artikkel
2023

Photoannealing of Microtissues Creates High-Density Capillary Network Containing Living Matter in a Volumetric-Independent Manner

Bidragsytere:
  • Maik Schot
  • Malin Becker
  • Carlo Alberto Paggi
  • Francisca Gomes
  • Timo Koch
  • Tarek Gensheimer
  • mfl.

Tidsskrift

Advanced Materials
ISSN 0935-9648
e-ISSN 1521-4095
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2023
Publisert online: 2023
Trykket: 2023
Open Access

Importkilder

Scopus-ID: 2-s2.0-85182407866

Beskrivelse Beskrivelse

Tittel

Photoannealing of Microtissues Creates High-Density Capillary Network Containing Living Matter in a Volumetric-Independent Manner

Sammendrag

The vascular tree is crucial for the survival and function of large living tissues. Despite breakthroughs in 3D bioprinting to endow engineered tissues with large blood vessels, there is currently no approach to engineer high-density capillary networks into living tissues in a scalable manner. We here present photo-annealing of living microtissues(PALM) as a scalable strategy to engineer capillary-rich tissues. Specifically, in-air microfluidics was used to produce living microtissues composed of cell-laden microgels in ultra-high throughput, which could be photo-annealed into a monolithic living matter. Annealed microtissues inherently give rise to an open and interconnected pore network within the resulting living matter. Interestingly, utilizing soft microgels enables microgel deformation, which leads to the uniform formation of capillary-sized pores. Importantly, the ultra-high throughput nature underlying the microtissue formation uniquely facilitates scalable production of living tissues of clinically relevant sizes (>1 cm3 ) with an integrated high-density capillary network. In short, PALM generates monolithic, microporous, modular tissues that meet the previously unsolved need for large engineered tissues containing high-density vascular networks, which is anticipated to advance the fields of engineered organs, regenerative medicine, and drug screening

Bidragsytere

Maik Schot

  • Tilknyttet:
    Forfatter
    ved Universiteit Twente

Malin Becker

  • Tilknyttet:
    Forfatter
    ved Universiteit Twente

Carlo Alberto Paggi

  • Tilknyttet:
    Forfatter
    ved Universiteit Twente

Francisca Gomes

  • Tilknyttet:
    Forfatter
    ved Universiteit Twente

Timo Koch

  • Tilknyttet:
    Forfatter
    ved Mekanikk ved Universitetet i Oslo
1 - 5 av 12 | Neste | Siste »