Cristin-resultat-ID: 2222740
Sist endret: 16. februar 2024, 09:58
NVI-rapporteringsår: 2024
Resultat
Vitenskapelig artikkel
2024

A Hybrid Current- and Voltage-Source Driver for Active Driving of Series-Connected SiC MOSFETs

Bidragsytere:
  • Tobias Nieckula Ubostad
  • Daniel Alexander Philipps og
  • Dimosthenis Peftitsis

Tidsskrift

IEEE transactions on power electronics
ISSN 0885-8993
e-ISSN 1941-0107
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2024
Volum: 39
Hefte: 3
Sider: 3217 - 3232
Open Access

Importkilder

Scopus-ID: 2-s2.0-85182347165

Beskrivelse Beskrivelse

Tittel

A Hybrid Current- and Voltage-Source Driver for Active Driving of Series-Connected SiC MOSFETs

Sammendrag

The series-connection of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) is an attractive way of increasing the blocking voltage capability of a switch. However, due to inherent transient and steady-state voltage imbalance issues, such a design imposes challenges, especially at elevated switching frequencies, where increased dv/dt is required. This article proposes a hybrid gate driver for series-connected Silicon Carbide (SiC) MOSFETs, which consists of a turn-on stage with a traditional voltage source gate driver (VSGD), and a turn-off sequence combining a Current Source Gate Driver (CSGD) and a Voltage Source Gate Driver (VSGD). The proposed hybrid gate driver can actively control the turn-off dv/dt and di/dt of the switch by adjusting the amplitude of the gate current in the Current Source Gate Driver (CSGD) stage, as well as balance the voltages of the serialized switches by adjusting the timing delays in the driver. This adaptability enables switching loss control of the devices. The proposed driver has been experimentally validated for two series-connected SiC MOSFETs. From experiments, it is shown that a voltage imbalance below 2% can be achieved at direct current (DC)-voltage of 1.5kV and that switching speeds can be adjusted between 20 and 70kV /µs, while the turn-off switching energy can be reduced by up to 41%.

Bidragsytere

Tobias Nieckula Ubostad

  • Tilknyttet:
    Forfatter
    ved Institutt for elektrisk energi ved Norges teknisk-naturvitenskapelige universitet

Daniel Alexander Philipps

  • Tilknyttet:
    Forfatter
    ved Institutt for elektrisk energi ved Norges teknisk-naturvitenskapelige universitet

Dimosthenis Peftitsis

  • Tilknyttet:
    Forfatter
    ved Institutt for elektrisk energi ved Norges teknisk-naturvitenskapelige universitet
1 - 3 av 3