Cristin-resultat-ID: 2243917
Sist endret: 4. mars 2024, 14:36
NVI-rapporteringsår: 2024
Resultat
Vitenskapelig artikkel
2024

Shallow and deep groundwater moderate methane dynamics in a high Arctic glacial catchment

Bidragsytere:
  • Gabrielle Emma Kleber
  • Leonard Magerl
  • Alexandra V. Turchyn
  • Kelly Redeker
  • Stefan Thiele
  • Martin Liira
  • mfl.

Tidsskrift

Frontiers in Earth Science
ISSN 2296-6463
e-ISSN 2296-6463
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2024
Publisert online: 2024
Trykket: 2024
Volum: 12
Artikkelnummer: 1340399
Open Access

Importkilder

Scopus-ID: 2-s2.0-85185491033

Beskrivelse Beskrivelse

Tittel

Shallow and deep groundwater moderate methane dynamics in a high Arctic glacial catchment

Sammendrag

Glacial groundwater can mobilize deep-seated methane from beneath glaciers and permafrost in the Arctic, leading to atmospheric emissions of this greenhouse gas. We present a temporal, hydro-chemical dataset of methane-rich groundwater collected during two melt seasons from a high Arctic glacial forefield to explore the seasonal dynamics of methane emissions. We use methane and ion concentrations and the isotopic composition of water and methane to investigate the sources of groundwater and the origin of the methane that the groundwater transports to the surface. Our results suggest two sources of groundwater, one shallow and one deep, which mix, and moderate methane dynamics. During summer, deep methane-rich groundwater is diluted by shallow oxygenated groundwater, leading to some microbial methane oxidation prior to its emergence at the surface. Characterization of the microbial compositions in the groundwater shows that microbial activity is an important seasonal methane sink along this flow-path. In the groundwater pool studied, we found that potential methane emissions were reduced by an average of 29% (±14%) throughout the summer due to microbial oxidation. During winter, deep groundwater remains active while many shallow systems shut down due to freezing, reducing subsurface methane oxidation, and potentially permitting larger methane emissions. Our results suggest that ratios of the different groundwater sources will change in the future as aquifer capacities and recharge volumes increase in a warming climate

Bidragsytere

Gabrielle Emma Kleber

  • Tilknyttet:
    Forfatter
    ved Institutt for geovitenskap ved UiT Norges arktiske universitet
  • Tilknyttet:
    Forfatter
    ved Universitetssenteret på Svalbard
  • Tilknyttet:
    Forfatter
    ved University of Cambridge

Jasper Leonard Magerl

Bidragsyterens navn vises på dette resultatet som Leonard Magerl
  • Tilknyttet:
    Forfatter
    ved Institutt for geovitenskap ved UiT Norges arktiske universitet

Alexandra V. Turchyn

  • Tilknyttet:
    Forfatter
    ved University of Cambridge

K. Redeker

Bidragsyterens navn vises på dette resultatet som Kelly Redeker
  • Tilknyttet:
    Forfatter
    ved University of York

Stefan Thiele

  • Tilknyttet:
    Forfatter
    ved Universitetet i Bergen
1 - 5 av 9 | Neste | Siste »