Cristin project ID: 686074
Last modified: November 27, 2019, 2:31 PM

Cristin project ID: 686074
Last modified: November 27, 2019, 2:31 PM
Project

The National IOR Centre of Norway

project manager

Ying Guo
at NORCE Energy & Technology at NORCE Norwegian Research Centre AS

project owner / coordinating institution or unit

  • Faculty of Science and Technology at University of Stavanger

Funding

  • Total budgetNOK 80.000.000
  • Research Council of Norway (RCN)
    Project code: 230303

Classification

Scientific disciplines

Physics • Mathematics • Rock and petroleum sciences • Mineralogy, petrology, geochemistry

Keywords

Petroleum science

Categories

Project category

  • Applied Research

Contact information

Timeline

Concluded
Start: December 1, 2013 End: November 30, 2021

Description Description

Title

The National IOR Centre of Norway

Popular scientific summary

The National IOR Centre of Norway aims to contribute to the implementation of cost-efficient and environmentally friendly technologies to improve the oil recovery on the Norwegian Continental Shelf. The Centre's research has the potential to improve profitability of IOR measures across several dimensions. Our researchers are developing new reservoir-stimulating techniques that are both more efficient, cheaper and more environmentally friendly. We are thus developing methods that can significantly improve the sweeping of the reservoir and increase the oil recovery from the Norwegian Continental Shelf. 

  

The IOR Centre provides solutions for improved oil recovery on the Norwegian Continental Shelf through academic excellence and close cooperation with the industry. To make sure our projects are relevant to our industry partners we offer topic-specific workshops for the partners to attend. By doing so, we are identifying the gaps in the current state-of-the art knowledge of the topic. At the same time, academic researchers are presented with industry challenges, and the industry is presented with the recent research going on at the universities and research institutions. Future focus of the Centre can then be identified based on the feedback from the user partners and participants.  

This fall Lundin gave an internal workshop only for the researchers at UiS, NORCE and IFE. The topic of the workshop was the Edvard Grieg data that Lundin have made available for the researchers at the IOR-Centre. By offering the data to the Centre, Lundin encourages the researchers in the Centre to initiate projects that can generate new knowledge and improved IOR-methods, which can improve the oil recovery from the Edvard Grieg field.  

 

One of the strengths of the Centre is that we approach improved recovery on a multiscale level. The following are some research highlights from the Centre at the various levels:  

We have come far in developing new tracer technology for in-situ determination of residual oil saturation (SOR) and for better description of flow fields. We are currently investigating phase-partitioning inter-well tracers, nano-particles for inter-well studies and new esters for near-well experiments. We have tested the new inter-well tracers extensively at the lab and several are now qualified to move on for large scale testing. 

IORSim and IORCoreSim are good examples of outstanding research at the Centre.  IORCoreSim is used by the industry partners and fills a very important need of interpreting core scale experiments to extract valuable information and to improve our understanding of IOR recovery mechanisms. IORSim ensures that we can study the IOR methods developed in the Centre in realistic field scale models. The IOR models in IORSim are custom-made, and we make sure that the models are consistent with the lab-calibrated models in IORCoreSim. Thus, IORSim serves as a bridge between the lab models and the field models, allowing for fast implementation of the Centre’s research in the industry reservoir models. This is important because the ultimate proof of an IOR method studied at the lab is that it gives additional recovery (or economic value) at the field scale.

The Centre is also an important contributor to the Open Porous Media Initiative. Open source is a priority in The National IOR Centre of Norway.

Academic summary

Det Nasjonale IOR-senteret skal finne nye løsninger for den norske kontinentalsokkelen ved hjelp av verdensledende forskning og nært samarbeid med industrien. På norsk sokkel er over 50 prosent av petroleumsressursene fortsatt under bakken. Det er vårt ansvar å øke oljeutvinningen, samtidig som både kostnadene og miljøpåvirkningen må reduseres. For å nå dette målet er det viktig at alle samarbeider, både myndigheter, industri og akademia. Det Nasjonale IOR-senteret er en viktig arena for å få til akkurat det. 

IOR har som kjent svært positive økonomiske ringvirkninger. Metodene forlenger feltenes levetid og sikrer høyere inntekt til staten og næringslivet. Dermed sikrer man også jobber. Senterets forskning har potensial til å bedre lønnsomheten av IOR-tiltak langs flere dimensjoner. Forskerne våre utvikler nye reservoarstimulerende teknikker som er både mer effektive, billigere og mer miljøvennlige. Storskalatestene vi utfører er et viktig skritt mot piloter offshore og ved ytterligere forbedring av reservoarmodellene vil vår forskning også redusere risikoen knyttet til IOR-tiltak. 

Forskergruppen vår har høyt kvalifisert personell med kompetanse innenfor mange felt. Seniorforskere fra UiS, NORCE (tidligere IRIS) og IFE leder temaer/tasker, og forskere fra de ulike forskningsmiljøene hos partnerne (IOR/EOR, reservoar, kjemi, geologi, geokjemi, geofysikk, matematikk, nanovitenskap/-teknologi, biokjemi, miljø, industriell økonomi), samt forskere fra andre miljøer, er involvert i hvert enkelt forskningsfelt. Nedenfor lister vi opp de enkelte partnernes kompetanse som benyttes i senteret: 

Institutt for energiressurser (IER) og institutt for energi- og petroleumsteknologi (IEP) ved UiS sammen med petroleumslaboratoriet ved NORCE er blant landets ledende institusjoner innen petroleumsforskning. De er sterkt involvert i IOR-forskning og -testing, Special Core Analysis (SCAL) og har et bredt spekter av laboratoriefasiliteter. De viktigste fagfeltene er: 

  • Reservoarteknikk (geomekanikk, brønntestanalyse, reservoarsimuleringer og modellering, poreskalamodellering, resistivitetsmålinger, kompressibilitet) 

  • Oljegeovitenskap (geofysikk, berg- og mineralanalyser og mikroskopi) 

  • Spesialkjerneanalyser/tolkning (fuktbarhet, kapillærtrykk og rel. perm) 

  • Simulering og tolkning av eksperimenter (boring, produksjon, naturgass og miljøteknikk) 

Avdeling for Sporstoffteknoklogi ved IFE har avanserte laboratorier for kvalifisering av sporingsstoffer. Hovedoppgaven deres er utvikling av sporingsstoffer for reservoarkarakterisering og sporingsstoffer for estimering av gjenværende oljemetning. Spesialisert utstyr for kvalifisering av sporingsstoffer ved relevante reservoarforhold er tilgjengelig, samt avansert analytisk instrumentering for deteksjon ved ultralave konsentrasjoner (ppt-nivå). 

Ved NORCE finnes også en internasjonalt ledende gruppe forskere som utvikler fysiske, matematiske og numeriske metoder for forbedret reservoarutvikling. Denne gruppen er blant annet kjent for å ha utviklet ensemble baserte metoder for bruk innen petroleum, som nå er i bruk verden over og også er kommersialisert.

Senteret har også et stort antall numeriske forskningsanlegg, for eks. IORCoreSim, IORSim og OPM.

Method

The Centre's research personnel come from physics, chemistry, geomechanics, geology, geochemistry, mathematics, petroleum engineering and other sciences. In addition, psychologists, sociologists, and economists widen the technology perspective to improve the decision making process in IOR operations. 

Research is grouped in two main themes: Mobile and immobile oil and EOR methods and Mobile oil: reservoir characterisation to improve volumetric sweep. These are again split into tasks.

These are the main areas of research:

Experimental IOR research

Our laboratories perform experiments on 

  • physical and chemical interactions between crude oil, brine, and rock  
  • how the ion composition in the injection water («Smart Water») may improve the recovery by mobilizing oil
  • chemical and physical rock-fluid interactions 
  • how fluid components influence wetting and interfacial tension parameters

Flooding experiments
The instrumentation allows core flooding experiments on fluid-rock interactions to run uninterrupted for years at high temperatures and pressures.

Spontaneous imbibition experiments display the wetting state and other oil recovery characteristics in outcrop and reservoir cores. Tri-axial rock mechanical tests show the deformation dynamics at a variety of stress states during flooding of non-equilibrium fluids.

Mineral alteration of flooded cores is directly observed in-house by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Water weakening of chalk
Chalk mechanical behaviour and changes in permeability is observed at in-situ conditions during normal reservoir operations.

Core sample deformation dynamics is studied at high pressure and temperature. In uniaxial strain experiments, with special emphasis on the relation between the deformation dynamics and pore fluid composition.

Optimized water chemistry
The reservoir rock properties will be altered whenever seawater, or any fluid with a different chemical composition than the formation water  is injected.  

The alteration entails physical changes and changes in surface chemistry and may affect the water imbibition (and oil expulsion), the change of compaction and exacerbate or moderate scaling problems in production wells.

A proper upscaling of pore scale results to the core- and field scale requires an understanding of how the water chemistry affects the pore space texture.  

A pore scale lattice Boltzmann simulator including a geochemical description has been developed to study the impact of reactive flow at the pore scale.

EOR from Carbonates and Sandstones by Smart Water
The wetting condition dictates the distribution of oil and water in the porous medium, which in turn influences important reservoir parameters like capillary pressure and relative permeability of the oil and water phases.

By designing injection water with optimum ion composition, i.e., make a «Smart Water», the wetting conditions of the reservoir rock can be changed in a positive way to maximize the oil recovery.

To design the smart water, the chemical interaction between the rock surface, formation brine, crude oil, and the injection brine must be understood in details.

participants

project manager
Active cristin-person

Ying Guo

  • Affiliation:
    Project manager
    at NORCE Energy & Technology at NORCE Norwegian Research Centre AS

Zhixin Yu

  • Affiliation:
    Participant
    at Department of Energy and Petroleum Engineering at University of Stavanger

Yuqing Chang

  • Affiliation:
    Participant
    at NORCE Energy & Technology at NORCE Norwegian Research Centre AS

Yasar Deniz Cam

  • Affiliation:
    Participant
    at Finance Department at University of Stavanger

Xiaodong Luo

  • Affiliation:
    Participant
    at NORCE Energy & Technology at NORCE Norwegian Research Centre AS
1 - 5 of 110 | Next | Last »

Results Results

Analytical solutions for forced and spontaneous imbibition accounting for viscous coupling.

Andersen, Pål Østebø; Nesvik, Eirik Kjos; Standnes, Dag Chun. 2019, Journal of Petroleum Science and Engineering. UISAcademic article

Mineral replacement in long-term flooded porous carbonate rocks.

Minde, Mona Wetrhus; Zimmermann, Udo; Madland, Merete Vadla; Korsnes, Reidar Inge; Schultz, Bernhard; Gilbricht, Sabine. 2019, Geochimica et Cosmochimica Acta. TUBF, UISAcademic article

Evaluation of multicomponent adsorption kinetics for carbon dioxide enhanced gas recovery from tight shales.

Berawala, Dhruvit Satishchandra; Andersen, Pål Østebø. 2020, SPE Reservoir Evaluation and Engineering. UISAcademic article

Automatic and adaptive localization for ensemble-based history matching.

Luo, Xiaodong; Bhakta, Tuhin. 2019, Journal of Petroleum Science and Engineering. NORCEAcademic article
1 - 5 of 59 | Next | Last »