Cristin-resultat-ID: 1456937
Sist endret: 3. februar 2023, 12:55
NVI-rapporteringsår: 2017
Resultat
Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
2017

Numerical Modeling Framework for Wind Turbine Analysis & Atmospheric Boundary Layer Interaction

Bidragsytere:
  • Muhammad Salman Siddiqui
  • Adil Rasheed
  • Mandar Tabib og
  • Trond Kvamsdal

Bok

35th Wind Energy Symposium, Grapevine, Texas, 9 - 13 January 2017
ISBN:
  • 978-1-62410-456-5

Utgiver

American Institute of Aeronautics and Astronautics (AIAA)
NVI-nivå 1

Om resultatet

Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
Publiseringsår: 2017
Antall sider: 11
ISBN:
  • 978-1-62410-456-5
Open Access

Importkilder

Scopus-ID: 2-s2.0-85040313336

Klassifisering

Fagfelt (NPI)

Fagfelt: Matematikk
- Fagområde: Realfag og teknologi

Beskrivelse Beskrivelse

Tittel

Numerical Modeling Framework for Wind Turbine Analysis & Atmospheric Boundary Layer Interaction

Sammendrag

Prevailing atmospheric conditions can have a significant impact on the performance of large mega-watt wind turbines. A purely experimental evaluation of this impact is currently not possible and hence numerical techniques have been employed in this work. With the focus on aerodynamic performance of wind turbine, an attempt is made to realize the following objectives: (a) To evaluate the predictive capabilities of fully resolved Sliding Mesh Interface (SMI) transient simulations around the wind turbine against the steady state Multiple Reference Frame (MRF) simulations (b) To investigate the performance of the wind turbine subjected to uniform inlet profiles against atmospheric boundary layer profiles. (c) To study the effect of atmospheric stability on wind turbine performance. The methods are validated first and then implemented on a national renewable energy labora- tory 5 MW reference wind turbine model for the aerodynamic study. Highly uneven and irregular wake profiles are seen with variation in input conditions(TKE). Uneven distribution of low velocity in the lateral direction enhances the momentum transfer with in the shear layers and contributes positively towards the wake recovery. It is also found that in unstable stratified conditions, the positive buoyancy flux at the surface creates thermal instabilities which enhances the turbulent kinetic energy and the turbulent mixing, and helps the wake to recover faster.

Bidragsytere

Muhammad Salman Siddiqui

  • Tilknyttet:
    Forfatter
    ved Institutt for matematiske fag ved Norges teknisk-naturvitenskapelige universitet
Aktiv cristin-person

Adil Rasheed

  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS

Mandar Vasudeo Tabib

Bidragsyterens navn vises på dette resultatet som Mandar Tabib
  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS

Trond Kvamsdal

  • Tilknyttet:
    Forfatter
    ved Institutt for matematiske fag ved Norges teknisk-naturvitenskapelige universitet
1 - 4 av 4

Resultatet er en del av Resultatet er en del av

35th Wind Energy Symposium, Grapevine, Texas, 9 - 13 January 2017.

AIAA, SciTech. 2017, American Institute of Aeronautics and Astronautics (AIAA). Vitenskapelig antologi/Konferanseserie
1 - 1 av 1