Cristin-prosjekt-ID: 593872
Sist endret: 16. september 2019, 11:26

Cristin-prosjekt-ID: 593872
Sist endret: 16. september 2019, 11:26
Prosjekt

VIROVAC: Filter-feeding mesozooplankton as uncharted accomplices in marine virus ecology

prosjektleder

Jessica Louise Ray
ved NORCE Klima og miljø ved NORCE Norwegian Research Centre AS

prosjekteier / koordinerende forskningsansvarlig enhet

  • NORCE Klima og miljø ved NORCE Norwegian Research Centre AS

Finansiering

  • TotalbudsjettNOK 9.990.000
  • Norges forskningsråd
    Prosjektkode: 275710

Klassifisering

Vitenskapsdisipliner

Marinbiologi

Kategorier

Prosjektkategori

  • Grunnforskning

Kontaktinformasjon

Telefon
(+47) 93638481
Sted
Jessica Louise Ray

Tidsramme

Avsluttet
Start: 1. april 2018 Slutt: 31. mars 2021

Beskrivelse Beskrivelse

Tittel

VIROVAC: Filter-feeding mesozooplankton as uncharted accomplices in marine virus ecology

Populærvitenskapelig sammendrag

Viruses fill the world's oceans, more so than any other biological units on
the planet! Even though viruses are not "alive", they are critical regulators
of the diversity of organisms and the efficiency of biochemical processes
that occur in the oceans. Despite this, we know very little about viruses, and in particular about how these tiny entities persist and spread. One group of marine animals, the planktonic tunicates known as appendicularians, are specialists when it comes to feeding on low amounts of small food particles. In fact, the filtering "houses" that they live inside and use to trap food particles are so efficient that they can even trap large viruses. This suggests that viruses can not only prey upon host organisms, but that they themselves can end up on the menu for small-particle specialists like appendicularians. Although being trapped in the filtering house of an appendicularian may mean digestion for a virus particle, the rapidity with which appendicularians change their houses and empty their guts gives any trapped viruses a likelihood of survival, either trapped in a discarded house or inside a faecal pellet, both of which sink rapidly to the ocean floor. The interaction between appendicularians and viruses thus stands to reshape our understanding not only of the role of viruses in the ocean, but also of the mechanisms for how viruses may persist and spread both in space and in time. Which viruses can be trapped and ingested by appendicularians? How many viruses sink to the ocean floor trapped inside appendicularian houses and faecal pellets? How does trapping inside houses and faecal pellets affect the persistence of virus infectivity relative to free-floating viruses over time? In the VIROVAC project, researchers at Uni Research Environment and the University of Bergen will attempt to answer these questions using a combination of laboratory experiments and field sampling. They are assisted by colleagues in Canada and Israel.

Vitenskapelig sammendrag

The global ocean constitutes the largest biome on Earth, housing the myriad microorganisms that drive biogeochemical cycles. As the most abundant biological entities in the marine environment, viruses are key constituents
of the marine microbiome and indispensible players in our understanding of the interplay between marine ecosystems and biogeochemical cycles. Despite this, our understanding of the fundamental biological interactions that influence virus dynamics in the marine environment is incomplete. There is evidence demonstrating that viruses may be consumed by marine zooplankton, and the magnitude and consequences of this interaction for virus ecology are underexplored. Appendicularians are cosmopolitan filter-feeding gelatinous mesozooplankton that utilize intricate filter-feeding houses to collect and concentrate food particles as small as 0.2 μm in diameter. We have performed a pilot study in which we demonstrate that the appendicularian Oikopleura dioica is able to efficiently remove the Emiliania huxleyi virus from seawater and ingest virus particles. The trapping, ingestion or defecation of virus particles by appendicularians represents a trophic bypass from virus to zooplankton, with potential consequences for virus abundance, diversity, persistence, infectivity and dispersal. We propose to characterize the virus-appendicularian trophic link through the use of laboratory experiments to quantify the interaction of marine viruses with O. dioica in different biological compartments (house-trapping, ingestion and defecation). We hypothesize that house-trapping and defecation of virus particles by O. dioica represents a persistence mechanism for viruses in
the marine environment via the rapid sinking of trapped virus particle to
the marine sediments. We will validate our laboratory findings with field campaigns to correlate O. dioica abundance with virus presence in marine sediments, thereby renewing our understanding of viral ecology in the ocean.

Tittel

VIROVAC: Filtrerende dyreplankton kan fange virus og på den måten påvirke virusøkologi havet

Populærvitenskapelig sammendrag

Verdenshavene er fulle av virus, og ingen andre biologiske partikler finnes i større antall på planeten vår! Til tross for at virus ikke anses for å være "levende" er de helt uunnværlige for både biologisk diversitet og næringsomsetning i havet. Der er likevel mye vi ikke vet om dem, spesielt med hensyn på hvordan antallet av dem opprettholdes og hvordan de spres i havet. Én mulig spredningsmekanisme kan være beitere. Vi har i den forbindelse fattet interesse for en helt spesiell gruppe marine dyr ? halesekkdyr, eller planktoniske tunikater. Disse dyrene er spesialister på å fange bittesmå matpartikler - hovedsakelig planteplankton og bakterier
- fra sjøvann. Halesekkdyr bor nemlig inne i filtrerende "hus" som de
bruker til å fange og føre matpartikler rett inn i munnen sin med, og det viser seg at disse filterhusene også fanger store virus ganske effektivt! Slik kan virus, i tillegg til å infisere vertsorganismer, havne på menyen til halesekkdyrene. Dette betyr likevel ikke nødvendigvis slutten for virusene ettersom halesekkdyrene kasserer «filter-huset» sitt og tømmer tarmen hele tiden, og på den måten kan de tvert om føre viruspartiklene ned til havbunnen helt uskadet. Når vi finner ut mer om interaksjonen mellom virus og halesekkdyr kan vi bli nødt til å tenke nytt om hvilken rolle virus har i havet, samt hvordan de formerer seg, hvorfor de forsvinner og hvordan de sprer seg i det marine miljøet. Dette har vi lite kjennskap til og det
er derfor forskere ved Uni Research Miljø og Universitet i Bergen skal bruke de tre neste årene på å komme til bunns i saken. Hvilke marine virus kan halesekkdyr fange? Hvor mange virus blir fanget og fraktet ned til havbunnen? Hva har dette å si for deres overlevelse og spredning i det marine miljøet? Sammen med kollegaer i Canada og Israel skal prosjektdeltakerne i VIROVAC utføre laboratorieforsøk og feltarbeid for å forsøske å besvare disse spørsmålene.

Vitenskapelig sammendrag

Viruses fill the world's oceans and are more abundant than any other biological entity on the planet! Even though viruses are not "alive", they are critical regulators of the diversity of organisms and the efficiency of biogeochemical processes that occur in the oceans. Despite this, we know very little about viruses, and in particular about how these tiny entities persist and spread. One group of marine animals, the planktonic tunicates known as appendicularians, are specialists when it comes to feeding on low concentrations of small food particles. In fact, the filtering "houses" that they live inside and use to trap food particles are so efficient that they can even trap large viruses! This suggests that viruses can not only prey upon the host organisms that they infect, but that they themselves can end up on the menu for small-particle specialists like appendicularians. Although being trapped in the filtering house of an appendicularian may mean digestion for a virus particle, the rapidity with which appendicularians renew their houses and empty their guts provides the possibility of virus “survival”, either trapped in a discarded house or inside a faecal pellet, both of which sink rapidly to the ocean floor. The previously overlooked interaction between appendicularians and viruses thus stands to reshape our understanding, not only of the role of viruses in the ocean, but also of the mechanisms for how viruses may persist and spread both in space and in time. Which viruses can be trapped and ingested by appendicularians? How many viruses sink to the ocean floor trapped inside appendicularian houses and faecal pellets? How does trapping inside houses and faecal pellets affect the infectivity of viruses relative to their free-floating counterparts? In the VIROVAC project, researchers at Uni Research Environment and the University of Bergen will attempt to answer these questions using a combination of laboratory experiments and field sampling. They are assisted by experts in virus and phytoplankton ecology in Canada.

prosjektdeltakere

prosjektleder

Jessica Louise Ray

  • Tilknyttet:
    Prosjektleder
    ved NORCE Klima og miljø ved NORCE Norwegian Research Centre AS

Elzbieta Anna Petelenz-Kurdziel

  • Tilknyttet:
    Prosjektdeltaker
    ved Universitetet i Bergen

Eric Malcolm Thompson

  • Tilknyttet:
    Prosjektdeltaker
    ved Institutt for biovitenskap (BIO) ved Universitetet i Bergen
  • Tilknyttet:
    Prosjektdeltaker
    ved Sars internasjonale senter for marin molekylærbiologi ved Universitetet i Bergen
  • Tilknyttet:
    Prosjektdeltaker
    ved NORCE Klima og miljø ved NORCE Norwegian Research Centre AS

Kyle Mayers

  • Tilknyttet:
    Prosjektdeltaker
    ved NORCE Klima og miljø ved NORCE Norwegian Research Centre AS

Christofer Troedsson

  • Tilknyttet:
    Prosjektdeltaker
    ved NORCE Klima og miljø ved NORCE Norwegian Research Centre AS
1 - 5 av 12 | Neste | Siste »

Resultater Resultater

Trophic interactions between filter-feeding mesozooplankton and the Emiliania huxleyi virus.

Mayers, Kyle; Lawrence, Janice; Töpper, Joachim Paul; Skaar, Katrine Sandnes; Petelenz-Kurdziel, Elzbieta Anna; Larsen, Aud; Bratbak, Gunnar; Schatz, Daniella; Vardi, Assaf; Ray, Jessica Louise. 2019, 2019 IMBeR Open Science Conference. NORCE, UIBPoster

Jell-OH! The effect of gelatinous zooplankton on marine microbial systems.

Mayers, Kyle; Lawrence, Janice; Larsen, Aud; Skaar, Katrine Sandnes; Ray, Jessica Louise. 2018, Departmental seminar. NORCE, UIBFaglig foredrag

From sunlight to whales: a journey along the marine food web.

Mayers, Kyle. 2018, Pint of Science festival. NORCEPopulærvitenskapelig foredrag

Viruses on the menu: The appendicularian Oikopleura dioica efficiently removes viruses from seawater.

Lawrence, Janice; Töpper, Joachim Paul; Petelenz-Kurdziel, Elzbieta Anna; Bratbak, Gunnar; Larsen, Aud; Thompson, Eric; Troedsson, Christofer; Ray, Jessica Louise. 2017, Limnology and Oceanography. NORCE, UNB, NINA, UIBVitenskapelig artikkel

The Virus-X project.

Steen, Ida Helene. 2017, Visit-EØS/EU minister. UIBFaglig foredrag
1 - 5 av 5